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The Glauber dynamics of the pure and weakly disordered random-bond two-dimensional~2D! Ising model
is studied at zero temperature. A single characteristic length scale,L(t), is extracted from the equal time
correlation function. In the pure case, the persistence probability,P(t), decreases algebraically with the
coarsening length scale. In the disordered case, three distinct regimes are identified: a short time regime
where the behavior is purelike; an intermediate regime where the persistence probability decays nonalgebra-
ically with time; and a long time regime where the domains freeze and there is a cessation of growth. In the

intermediate regime, we find thatP(t);L(t)2u8, whereu850.42060.009. The value ofu8 is consistent with
that found for the pure 2D Ising model at zero temperature. Our results in the intermediate regime are
consistent with a logarithmic decay of the persistence probability with time,P(t);(ln t)2ud, whereud50.63
60.01. @S1063-651X~99!51403-7#

PACS number~s!: 05.20.2y, 05.50.1q, 05.70.Ln, 64.60.Cn
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The ‘‘persistence’’ problem concerns the determination
the fraction of space which persists in the same phase u
some later time. So, for spin systems we are interested in
fraction of spins that have not flipped in some timet. This
problem has been studied extensively over the last few y
@1–12# and, somewhat surprisingly, the persistence expon
~u! has been found to be highly nontrivial even for simp
one-dimensional models, such as theq-state Potts model a
zero temperature@6,7#, of nonequilibrium coarsening dynam
ics.

Although Stauffer@3# has performed Monte Carlo simu
lations in up to 5D, most of the work in higher dimensio
has been largely limited to two dimensions~2D!. Numerical
studies@1,3# estimate thatu;0.22 for the 2D Ising mode
with Glauber dynamics atT50. The analogous exponent fo
nonequilibrium critical dynamics has also come under int
sive investigation@9–12#. Very recently, the persistenc
problem has been generalized to partial survivors@8#. There
has, however, been relatively little published in the literat
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to date on the persistence problem in systems contain
disorder. Here we present the results of a numerical stud
an Ising model containing quenched impurities.

In this work we study domain growth@13# in a weakly
disordered random-bond 2D Ising model and restrict o
selves to zero temperature. The model we work with is giv
by

H52(̂
i j &

Ji j SiSj , ~1!

where the Ising spins (Si) are assumed to be on every site
a squareN55003500 lattice with periodic boundary cond
tions and the summation runs over all nearest-neighbor p
The quenched ferromagnetic interactions are chosen fro
binary distribution, namely,

P~Ji j !5~12p!d~Ji j !1pd~Ji j 21!, ~2!

where p is the concentration of bonds. The data presen
here were obtained on a suite of Silicon Graphics works
tions.
R2493 ©1999 The American Physical Society
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We work at zero temperature and consider a range
bond concentrations in the vicinity of the pure case, 0.9
<p<1.0. The initial configuration of the spins is chosen
random, i.e.,Si(t50)561 with equal probability for alli.
We then update the lattice using the following algorithm:

FIG. 1. Log-log plot ofP(t) againstt1/2, for the pure 2D Ising
model. The linear fit shown gives a value ofu850.41860.004.

FIG. 2. ~a! Plot of lnP(t) against lnt for a range of bond con-
centrations,p; the data for the pure case,p51.0, is plotted for
comparison and the straight line has slope20.209.~b! Re-plot of
some of the data shown in~a! on an expanded scale to highlight th
deviations from algebraic decay; the linear fit is for the pure c
with u50.209.
of
5
t

~i! For a given spinSi we first calculate the local energy
DEi ;

~ii ! if DEi,0, we leaveSi as it is;
~iii ! if DEi50, we flip Si at random~i.e., with a probabil-
ity 1/2!;

~iv! if DEi.0, we flip Si with probability 1.
We repeat steps~i!–~iv! throughout the entire lattice dur
ing each Monte Carlo step.

The number,n(t), of spins which have never flipped unt
time t is then counted. In practice, we recordn(t5t r), where
t r52r , r 50,1, . . . ,13. Thepersistence probability is define
by @1#

P~ t !5@^n~ t !&#/N, ~3!

where^ . . . & denotes an average over different initial cond
tions and@ . . . # indicates an average over samples, i.e.,
bond disorder; typically,the number of different initial con-
ditions 3 the number of samples5100. During the simula-
tions we also record the equal time pair correlation functi
C(r ,t), which is defined by@13#

e

FIG. 3. Plot of lnP(t) against ln(lnt) for a range of bond con-
centrations,p; the data for the pure case,p51.0, is plotted for
comparison.

FIG. 4. Replot of the data forp50.99 from Fig. 3. The straight
line fit confirms a logarithmic decay of the persistence probabi
over time. The gradient of the line shown leads toud50.63
60.01.
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C~r ,t !5
1

N (
i

@^Si~ t !Si 1r~ t !&#. ~4!

According to the scaling hypothesis

C~r ,t !5 f S r

L~ t ! D , ~5!

where f (x) is a scaling function andL(t) is a single charac-
teristic coarsening length scale. For the pure modelp
51.0) it is now well established thatP(t) decays algebra
ically @1#,

P~ t !;t2u, ~6!

whereu;0.22. Furthermore, for the nonrandom model it
also well known that the domain length increases ast1/2 @14#.
Hence, from Eq.~6! we can write

P~ t !;~ t1/2!2u8, ~7!

whereu852u.
We now turn to our numerical results. To begin with, w

look at the pure (p51.0) case to extract the value ofu8
mentioned above for our model.

In Fig. 1 we plot lnP(t) versus lnt1/2 for the pure case
over the time interval 2<t<4096. The slope of the straigh
line givesu850.41860.004, which, of course, implies tha
u50.20960.002, consistent with previous results@1,3# ~the
error bar quoted here is a statistical one!.

As an independent check, we also extracted the coar
ing length scale by fitting the equal time correlation functio
Eq. ~4!, to its expected form, Eq.~5!. Our results are com
pletely consistent with

L~ t !;t1/2. ~8!

When quenched impurities are introduced the domains g
more slowly than in pure systems and forT.0 it is expected
that @15# they increase as (T ln t)x, where the exponentx
54 in d52 @16#. ForT50 we expect the quenched disord
to lead to aneventualcessation of growth.

FIG. 5. Scaling plot ofC(r ,t) vs r /L(t), whereL(t) has been
chosen at each time to give the best data collapse.
n-
,

w

As we are working with weakly disordered models, o
would expect the initial decay ofP(t) to be given by Eq.~6!.
In Fig. 2~a! we show a log-log plot ofP(t) againstt for a
range of bond concentrations,p: 0.975<p<1.0. Although
the initial decrease inP(t) is indeed algebraic, there appea
to be nonalgebraic decay before ‘‘freezing’’ sets in. This
shown explicitly in Fig. 2~b! where deviations from algebrai
behaviour can be clearly seen. To investigate this point
ther, we replot the data in Fig. 3 as lnP(t) against ln(lnt). As
a consequence, we see that the persistence probability de
as

P~ t !;~ ln t !2ud ~9!

for a disordered system, whereud is now the persistence
exponent, before the long-time behavior sets in. Furth
more, we notice that the behavior for the various disorde
cases is qualitatively the same, irrespective of the amoun
disorder present.

For p,1.0 three distinct regimes can be identified:
initial short time regime (t,t1) over which the behavior is
purelike, an intermediate regime (t1<t<t2) over which the
persistence probability decreases logarithmically, and a fi
regime (t.t2) where the system appears to ‘‘freeze’’ an
P(t) effectively remains constant. It is clear from Fig. 3 th
as disorder increases,t2 decreases, i.e., the cessation of d
main growth is quickened by the strength of the disord
The three different regimes are clearly evident even in a v
weakly disordered (p50.99) system. To ensure that we ha
a reasonably large intermediate regime to work with, we n
restrict our attention to the case wherep50.99.

In Fig. 4 we replot the data forp50.99 over the range
16<t<1024. The data for short times (t,16) has been dis-
carded as has the data over times (t.1024), where the freez
ing of domains has occurred. The straight line fit leads t
persistence exponent ofud50.6360.01. This result would
appear to indicate a logarithmic growth of domains duri
the intermediate regime at zero temperature. This is so

FIG. 6. Plot of lnP(t) vs lnL(t), whereL(t) has been extracted
from Fig. 5. The linear fit confirms that the persistence probabi
decays algebraically with the coarsening length scale,L(t). The
slope of the straight line yieldsu850.42060.009.
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what surprising, as the logarithmic behavior discussed ea
is believed to hold true forfinite temperatures.

The behavior of the growth before ‘‘freezing’’ sets in ca
be extracted independently by fitting the equal time corre
tion function to its expected scaling form given by Eq.~5!. In
Fig. 5 we present the scaling plot ofC(r ,t) for p50.99. We
plot C(r ,t) againstr /L(t), whereL(t) has been chosen a
each time to give the best data collapse. This clearly p
duces an excellent scaling plot. We stress that the plot sh
in Fig. 5 makes no assumptions about the growth law ofL(t)
with t. In Fig. 6 we plot the data for the persistence proba
ity for p50.99 as a log-log plot ofP(t) againstL(t), where
the latter has been extracted from Fig. 5. The linear fit in F
6 implies thatu850.42060.009, consistent with our earlie
result for thepure case. Thus, expressingP(t) in terms of
the coarsening length scale leads to the same behavior a
the pure case.
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To conclude, we have presented data for the ze
temperature dynamics of the weakly disordered rando
bond 2D Ising model. For the disordered system we fi
evidence thatP(t) decreases logarithmically with time ove
an intermediate regime. The~disordered! persistence expo
nent over this regime is estimated to beud50.6360.01.
However, for both the pure and the disordered models
persistence probability is found to decay algebraically w
the coarsening length scale with thesame exponent. At
present we are studying generalized persistence@8–12# for
disordered models.
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