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The Glauber dynamics of the pure and weakly disordered random-bond two-dimerigioh&ing model
is studied at zero temperature. A single characteristic length dcétp, is extracted from the equal time
correlation function. In the pure case, the persistence probabiify), decreases algebraically with the
coarsening length scale. In the disordered case, three distinct regimes are identified: a short time regime
where the behavior is purelike; an intermediate regime where the persistence probability decays nonalgebra-
ically with time; and a long time regime where the domains freeze and there is a cessation of growth. In the
intermediate regime, we find thR(t)~L(t) "¢, where§’ =0.420+0.009. The value of’ is consistent with
that found for the pure 2D Ising model at zero temperature. Our results in the intermediate regime are
consistent with a logarithmic decay of the persistence probability with tRig,~ (Int)~%, where 6,=0.63
+0.01.[S1063-651X99)51403-7

PACS numbdrs): 05.20-y, 05.50+q, 05.70.Ln, 64.60.Cn

The “persistence” problem concerns the determination ofto date on the persistence problem in systems containing
the fraction of space which persists in the same phase up @isorder. Here we present the results of a numerical study of
some later time. So, for spin systems we are interested in th@n Ising model containing quenched impurities.
fraction of spins that have not flipped in some timeThis In this work we study domain growtfil3] in a weakly
problem has been studied extensively over the last few yeadisordered random-bond 2D Ising model and restrict our-
[1-12 and, somewhat surprisingly, the persistence exponergelves to zero temperature. The model we work with is given
(6) has been found to be highly nontrivial even for simple by
one-dimensional models, such as tipstate Potts model at
izcc?sr.o temperaturgs, 7], of nonequilibrium coarsening dynam He — % 35S, o

Although Stauffe{3] has performed Monte Carlo simu- :
lations in up to 5D, most of the work in higher dimensions where the Ising spinsY) are assumed to be on every site of
has been largely limited to two dimensiof2D). Numerical  a squareN=500x 500 lattice with periodic boundary condi-
studies[1,3] estimate that)~0.22 for the 2D Ising model tions and the summation runs over all nearest-neighbor pairs.
with Glauber dynamics al=0. The analogous exponent for The quenched ferromagnetic interactions are chosen from a
nonequilibrium critical dynamics has also come under intenbinary distribution, namely,
sive investigation[9—-12]. Very recently, the persistence
problem has been generalized to partial survii8is There P(Jij)=(1-p)d(Jjj) +psé(Ji;— 1), 2
has, however, been relatively little published in the literature

where p is the concentration of bonds. The data presented
here were obtained on a suite of Silicon Graphics worksta-
*Electronic address: S.Jain@derby.ac.uk tions.
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FIG. 1. Log-log plot ofP(t) againstt*?, for the pure 2D Ising

model. The linear fit shown gives a value #f=0.418+0.004.

We work at zero temperature and consider a range of
bond concentrations in the vicinity of the pure case, 0.975 (i) For a given spirS, we first calculate the local energy,
=<p=1.0. The initial configuration of the spins is chosen at
random, i.e. S (t=0)= =1 with equal probability for all.
We then update the lattice using the following algorithm:
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FIG. 3. Plot of InP(t) against In(Irt) for a range of bond con-

AE;;

(i) if AE;<0, we leaveS as it is;
(ii) if AE;=0, we flip S, at random(i.e., with a probabil-

ity 1/2);

(iv) if AE;>0, we flip S; with probability 1.
We repeat step§)—(iv) throughout the entire lattice dur-
ing each Monte Carlo step.
The numbern(t), of spins which have never flipped until

P(t)=[(n(t)) /N,

centrations,p; the data for the pure casp~=1.0, is plotted for
comparison.

timetis then counted. In practice, we recar(t=t,), where
. t,=2",r=0,1,...,13. Thepersistence probability is defined

3

J where(.. . .) denotes an average over different initial condi-
tions and[ . . . ] indicates an average over samples, i.e., the
bond disorder; typicallythe number of different initial con-
ditions X the number of samplesl00. During the simula-

tions we also record the equal time pair correlation function,

C(r,t), which is defined by 13]
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FIG. 2. (a) Plot of InP(t) against Irt for a range of bond con-
centrations,p; the data for the pure casp=1.0, is plotted for
comparison and the straight line has slop8.209.(b) Re-plot of
some of the data shown {@) on an expanded scale to highlight the line fit confirms a logarithmic decay of the persistence probability
deviations from algebraic decay; the linear fit is for the pure casever time. The gradient of the line shown leads dg=0.63
with 6=0.209.
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FIG. 4. Replot of the data fgp=0.99 from Fig. 3. The straight

+0.01.
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FIG. 5. Scaling plot ofC(r,t) vsr/L(t), whereL(t) has been FIG. 6. Plot of InP(t) vs InL(t), whereL(t) has been extracted
chosen at each time to give the best data collapse. from Fig. 5. The linear fit confirms that the persistence probability

decays algebraically with the coarsening length schl¢). The
1 slope of the straight line yieldg8' = 0.420+ 0.009.
C(r,H=5 2 [(S(OS (D). @
N5

As we are working with weakly disordered models, one
According to the scaling hypothesis would expect the initial decay d&¥(t) to be given by Eq(6).
In Fig. 2(@) we show a log-log plot oP(t) againstt for a
r range of bond concentrationp; 0.975<p=<1.0. Although
C(r.t)=f (m) (5) the initial decrease iR(t) is indeed algebraic, there appears
to be nonalgebraic decay before “freezing” sets in. This is
wheref(x) is a scaling function anti(t) is a single charac- shown explicitly in Fig. 2b) where deviations from algebraic
teristic coarsening length scale. For the pure model ( behaviour can be clearly seen. To investigate this point fur-
=1.0) it is now well established tha(t) decays algebra- ther, we replot the data in Fig. 3 asit) against In(Irt). As
ically [1], a consequence, we see that the persistence probability decays
as
P(t)~t ¢, (6)

where 6~0.22. Furthermore, for the nonrandom model it is P(t)~(Int) % (9
also well known that the domain length increases*4$14].
Hence, from Eq(6) we can write

for a disordered system, whew# is now the persistence

P(t)~(t¥2)~ ¢, (7)  exponent, before the long-time behavior sets in. Further-
more, we notice that the behavior for the various disordered
where 9’ =26. cases is qualitatively the same, irrespective of the amount of
We now turn to our numerical results. To begin with, we disorder present.
look at the pure p=1.0) case to extract the value &f For p<1.0 three distinct regimes can be identified: an
mentioned above for our model. initial short time regime f(<t;) over which the behavior is

In Fig. 1 we plot InP(t) versus IrtY? for the pure case purelike, an intermediate regimeé;&t<t,) over which the
over the time interval t<4096. The slope of the straight persistence probability decreases logarithmically, and a final
line gives #’ =0.418+0.004, which, of course, implies that regime ¢>t,) where the system appears to “freeze” and
6=0.209%+0.002, consistent with previous resulis3] (the  P(t) effectively remains constant. It is clear from Fig. 3 that
error bar quoted here is a statistical pne as disorder increases, decreases, i.e., the cessation of do-

As an independent check, we also extracted the coarsemrain growth is quickened by the strength of the disorder.
ing length scale by fitting the equal time correlation function, The three different regimes are clearly evident even in a very
Eqg. (4), to its expected form, Eq5). Our results are com- weakly disordered{=0.99) system. To ensure that we have
pletely consistent with a reasonably large intermediate regime to work with, we now

restrict our attention to the case whegre-0.99.
L(t)~tY2 (8) In Fig. 4 we replot the data fop=0.99 over the range
16<t=<1024. The data for short times<{16) has been dis-
When quenched impurities are introduced the domains growarded as has the data over times 1024), where the freez-
more slowly than in pure systems and for-0 it is expected ing of domains has occurred. The straight line fit leads to a
that [15] they increase asT(Int)*, where the exponemnt persistence exponent @f;=0.63+0.01. This result would
=4 ind=2[16]. ForT=0 we expect the quenched disorder appear to indicate a logarithmic growth of domains during
to lead to areventualcessation of growth. the intermediate regime at zero temperature. This is some-
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what surprising, as the logarithmic behavior discussed earlier To conclude, we have presented data for the zero-
is believed to hold true fofinite temperatures. temperature dynamics of the weakly disordered random-
The behavior of the growth before “freezing” sets in can bond 2D Ising model. For the disordered system we find
be extracted independently by fitting the equal time correlaevidence thaP(t) decreases logarithmically with time over
tion function to its expected scaling form given by E§). In an intermediate regime. Thelisordered persistence expo-
Fig. 5 we present the scaling plot 6{r,t) for p=0.99. We  nent over this regime is estimated to g=0.63+0.01.
plot C(r,t) againstr/L(t), whereL(t) has been chosen at powever, for both the pure and the disordered models the
each time to give the best data collapse. This clearly propersistence probability is found to decay algebraically with
duces an excellent scaling plot. We stress that the plot showgp, coarsening length scale with tlame exponent. At

in_ Fig. 5 mgkes no assumptions about the g_rowth law (of _present we are studying generalized persistdBed 2] for
with t. In Fig. 6 we plot the data for the persistence probabil-§isordered models.

ity for p=0.99 as a log-log plot oP(t) againstL(t), where

the latter has been extracted from Fig. 5. The linear fitin Fig. | would like to thank Alan J. Bray for useful correspon-
6 implies thatd’ =0.420+ 0.009, consistent with our earlier dence during the initial stages of this work and for a critical
result for thepure case. Thus, expressirg(t) in terms of  reading of the draft manuscript. | am also grateful to Mat-
the coarsening length scale leads to the same behavior as fibvrew Birkin for both technical assistance and maintaining the
the pure case. Silicon Graphics workstations.
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